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1 Introduction 

This  chapter  will  very  briefly  introduce  and  review  some 
computational  experiments  in  using  trainable  gene  regulation 
network  models  to  simulate and  understand  selected  episodes  in  the 
development of the  fruit  fly, Drosophila  melanogaster. For  details 
the  reader  is  referred  to  the  papers  introduced  below. It will  then 
introduce  a new gene  regulation  network  model  which  can  describe 
promoter-level  substructure  in  gene  regulation. MOPFA =-,k 

As described  in  chapter XXX, gene  regulation may be thought of as  a 
combination of cis-acting  regulation by the  extended  promoter of a 
gene  (including  all  regulatory  sequences) by way of the  transcription 
complex,  and of transacting  regulation by the  transcription  factor 
products of other  genes. If we  simplify  the  cis-action by  using  a 
phenomenological  model  which  can  be  tuned  to  data,  such  as  a  unit 
or  other  small  portion of an artificial  neural  network,  then  the  full 
transacting  interaction  between  multiple  genes  during  development 
can  be  modelled  as  a  larger  network  which  can  again  be  tuned  or 
trained  to  data.  The  larger  network  will  in  general  need  to  have 
recurrent  (feedback)  connections  since  at  least  some  real  gene 
regulation  networks do. This  is the  basic  modeling  approach  taken in 
[Mjolsness  et  al. ‘911, which  describes  how  a  set of recurrent  neural 
networks  can  be  used  as  a  modeling  language  for  multiple 
developmental  processes  including  gene  regulation  within  a  single 
cell,  cell-cell  communication, and  cell  division.  Such  network  models 
have  been  called  “gene  circuits”,  “gene  regulation  networks”,  or 
“genetic  regulatory  networks”,  sometimes  without  distinguishing  the 
models  from  the  actual  modeled  systems. 
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In  [Mjolsness  et  al. ‘911 a  number of choices  were  made  in 
formulating  the  trainable  gene  regulation  network  models,  which 
affect  the  spatial  and  temporal  scales at  which  the  models are  likely 
to be useful.  The  dynamics  was  chosen  to  operate  deterministically 
and  continuously  in  time,  on  continuous-valued  concentration-like 
variables, so that  the  dynamical  equations  for  the  network  are 
coupled  systems of ordinary  differential  equations (ODE’S). One such 
form  was 

in  whichvi  is  the  continuous-valued  state  variable  for  gene  product i ,  
T~ is  the  matrix of positive  or  negative  connections by which  one 
transcription  factor  can  enhance  or  repress  another,  and g ( )  is  a 
nonlinear  monotonic  sigmoidal  activation  function. 
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Figure 1. Sketch of recurrent  analog  neural  network  model  for  gene 
regulation  networks. A set of analog-valued  units v are  connected in a 
continuous-time,  recurrent  circuit  by  a  connection  matrix T .  
Communication  with  circuits  in  other  cells  may  require  additional 
connections,  e.g. as formulated in [Mjolsness  et a1 ‘911. 

Such  equations  are  often stiff due  to  the  nonlinear  transfer  function 
g (  u ) .  Optimizing  the  unknown  parameters T ,  ‘I:, and h has  so  far 
proven  to  be  computationally  difficult:  special  versions of simulated 
annealing  optimization  [Lam  and  Delosme  ‘88a,  ‘88bl  have  been 
required  for  good  results,  e.g.  to  start  from  expression  patterns 
derived  from  a  known  model  and  recover  its  parameters  reliably 
[Reinitz  and  Sharp ‘951. Informatics work on  improving  this  situation 
could  be  important. 

In addition  to  the  analog  circuit  model,  the  framework of [Mjolsness 
et  al. ‘911 also  proposes  a  dynamic g r a m   m u  r by which  multiple 



biological  mechanisms  can  be  modeled by networks  and  then 
combined  into  a  consistent  overall  dynamical  model.  The 
grammar/circuit  combination  has  some  similarities  to  hybrid  models 
incorporating  Discrete  Event  Systems and ODE’S.  In  this way one  can 
for  example  combine  intracellular  and  intercellular  regulation 
network  submodels.  The  grammar  is  also  suitable  for 
implementation  in  object-oriented  computer  simulation  programs. 

2. Case  Studies 

In  this  section,  some of the  literature  on  trainable  gene  circuit 
models  which  have  been fit  to Drosophila gene  expression  patterns  is 
reviewed. 

2.1 Gap  Gene  Expression 

Such  gene  regulation  network  models  can be tuned  or  “trained”  with 
real  gene  expression  data,  and  then used to  make robust and at  least 
qualitatively  correct  experimental  predictions,  as  was  shown  in 
[Reinitz et al. ‘921. In  that  study  the  goal  was  to  understand  the 
network of gap  genes  expressed  in  bands  (domains)  along  the 
anterior-posterior  (A-P)  axis of the very early  embryo  (the  syncytial 
blastoderm) of D r o s o p h i l a .  This  experimental  system  has  the 
advantage  that  there  are  no  cell  membranes  between  adjacent  cell 
nuclei, so elaborate  cell-cell  signalling  mechanisms do not  need to be 
modeled.  Also D r o s o p h i l a  is  an  easy  species  to  manipulate 
genetically,  as  for  example  “saturation mutagenesis’’ - finding  all  the 
genes  affecting  a  particular  process - is  possible. 

Positional  information  along  the  A-P  axis of the  syncytial  blastoderm 
is  encoded in a  succession of different  ways  during  development.  At 
first  the  main  encoding  is a roughly  exponential  gradient of bicoid 
(bcd)  protein  imposed by the  mother  fly,  along  with  maternal 
hunchback  (hb) expression.  These  provide  gene  regulation  network 
inputs  to  the  gap  genes: Kruppel (Kr),  knirps  (kni),  giant (st), tailless 
( t l l ) ,  and hunchback  (hb) again.  These  each  establish  one  or  two 
broad domains of expression  along  the  A-P  axis.  The  gap  genes then 
serve  as  network  inputs  to  the  pair-rule  genes  including e v e n  - 
skipped (eve) and fushi  turazu  (ftz), which  establish  narrow,  precise 
stripes of expression and precise  positional  coding.  These  in  turn 
provide  input  to  segment-polarity  genes  such  as eng ru  i l  ed and 



wing   l e s s  which  are  the  first  to  retain  their  expression  pattern  into 
adulthood.  For  example, engrailed is expressed  in  bands just  one  cell 
wide  which  define  the  anterior  borders of the  parasegments. 
Introductions  to  the  relevant Drosophila developmental  biology  may 
be  found  in  [Lawrence 921 and [Alberts et al. 941. 

The  first  computer  experiments  with  fitting  such  analog  gene 
regulation  nets  to  real  expression  data  concerned  the  establishment 
of the  broad  gap  gene  domains  (excluding  the  extreme  ends of the A- 
P axis)  from  maternally  supplied  initial  conditions,  by a gene 
regulation  network  in  which  all  gap  genes  interact  with  all  others 
and bcd provides  input  to,  but  does  not  receive  any  input  from,  the 
gap  genes. 

Figure  2  shows  the  experimentally  observed and model-fitted  curves 
for  gap  gene  expression. They  are in  qualitative  agreement,  which  is 
the  most  that  can  be  expected  from  the  expression  data  that  was 
available  at  the  time.  The  extra  dip  in g t  expression  could  not  be 
predicted by the  model,  which  may  be  interpreted  as  an  indication of 
the  role of circuit  components  not  included  in  the  model. 
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Figure 2. Data  and  model  for  gap  gene  circuit.  Horizontal  axes  are  nuclei 
along  lateral  midline  from  anterior  to  posterior.  Vertical  axes  are  relative 
concentrations,  estimated  from  fluorescence  tagged  antibodies  for  the  data 
plot  (left)  or  output  from a circuit  model  fit to expression  data  using  a 
nonlinear  least  squares  criterion  and  simulated  annealing  optimization 
(right).  From  [Reinitz  et  al. '921. 

The  most  important  predictions of the  model  concerned  the 
anomalous  dose-response  observed  by  [Driever  and  Nusslein- 
Volhard '881. Figure 3 shows  the  prediction  in  detail;  it  may  be 



summarized by saying  that  positional  information  for  the  gap  gene 
system  is  specified  cooperatively by maternal bcd  and h b . This 
qualitative  behavior  was  observed  to  be  robust  over  many  runs of 
the  simulated  annealing  parameter-fitting  procedure,  and  therefore 
taken  to  be  a  prediction of the  model.  Essential  features of the 
cooperative  control of positional  information by maternal bcd and h b 
were  verified  experimentally  in  [Simpson-Brose  et  al. ‘941. The  gap 
gene  model  prediction and the  experiment  ocurred  independently of 
one  another. 
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Figure 3. Predictions of the model as bicoid dosage  is  increased:  location 
of selected  landmarks  along  A-P  (horizontal)  axis vs. number of bcd copies 
(vertical  axis).  (a)  Displacement of a  landmark  (anterior  margin of the K r  
domain)  expected if it  were  determined by reading  off  a  fixed 
concentration  value of maternal  Bicoid  protein  alone.  (b-c)  Smaller 
displacement of the  same  landmark  (anterior  margin of  the K r  domain) 
predicted by model.  (A  retrodiction.)  (d)  Observed  anomalously  small 
displacement of a  related  landmark:  the  first eve  stripe, not available in 
the  gap  gene  model  but  expected  to  be offset anteriorly  from  the K r  
landmark.  Note  anomalously  high  slope  compared to a,  but  as in b,c.  (e) 
Prediction:  return  to  the  behavior of  (a) if maternal h u n c h b a c k  is  set 
equal  to  zero.  From  [Reinitz  et  al. ‘921. 



2.2 Eve  Stripe  Expression 

Following the gap  gene  computer  experiments,  [Reinitz  and  Sharp 
‘951 went  on  to  perform  a  detailed  study of the  gap  gene  circuit  as 
extended  to  include  the  first of the  pair-rule  genes, eve .  The  further 
observations  which  could  be  included  in  this  model  allowed  an 
important  milestone  to  be  reached:  not  only  qualitative  behaviors, 
but  also  the  circuit  parameter  signs  and  rough  magnitudes  became 
reproducible  from  one  optimization  run  to  another,  and  some 
parameters  such  as  connections  to  eve  were  still  more  reproducible. 
Hence,  far  more  could  be  predicted.  For  example  the  diffusion 
constant  for eve  was  much  lower  than for  other  transcription  factors 
in  successful  runs.  This  has  an  experimental  interpretation: e v e  
mRNA is  expressed  in  the  outer  part of each  future  cell  just  as  the 
cell  membranes  are  invaginating  into  the  blastoderm  embryo, 
providing  an  apical  obstruction  to  diffusion. 

More  importantly,  each of the  eight  boundaries of the  four  central 
stripes of eve expression  could  be  assigned  a  particular  gap  gene  as 
the  essential  controller of that  boundary.  This  picture  is  in 
agreement  with  experimental  results  with  the  possible  exception of 
the  posterior  border of eve  stripe 3, the  interpretation of which  is an 
interesting  point of disagreement  [Small  et  al.  ‘96,  Reinitz  and  Sharp 
’95,  Frasch  and  Levine ‘871 and a  possible  focal  point  for  further 
laboratory  and/or  computer  experiments. 

Further  experimental  understanding of the  gap  genes’  influence  on 
eve  expression  is  obtained  in  [Reinitz et al. ‘981, where  it  is  shown 
that  the  fact  that eve  is  unregulated by other  pair-rule  genes  can  be 
understood by the  phase of its  periodic  spatial  pattern:  no  other 
phase  offset  pattern of pair-rule  expression  (e.g.  the  phase-shifted 
patterns of h a i r y  or f u sh i - ta razu )  can  be  produced  from  gap  gene 
input  alone. 



Figure 4. Drosophila e v e  stripe expression in model (right) and data 
(left). Green: eve expression,  red: kni expression. From [Reinitz and  Sharp 
‘951. Courtesy J. Reinitz and D. H. Sharp. 

Related  work  on  modeling  the  gap  gene  and eve  system of A-P axis 
positional  information  in Drosophila includes  [Hamahashi  and  Kitano 
‘981. 

2.3 Neurogenesis  and  Cell-Cell  Signaling 

The  syncytial  blastoderm  is very favorable,  but  also  very  unusual,  as 
morphogenetic  systems  go  because  there  is  no  cell  membrane 
interposed  between  nearby  cell  nuclei  and  therefore  the  elaborate 
mechanisms of cell-cell  signaling  do  not  come  into  play. But if we are 
to  model  development  in  its  generality  it  is  essential  to  include 
signaling  along  with  gene  regulation  networks. As a  first  attempt  in 
this  direction, we have  modeled  the  selection of particular  cells  in  an 
epithelial  sheet  (later  in D r o s o p h i l a  development)  to  become 
neuroblasts.  Virtually  the  same  gene  network  is  thought  to  be 
involved  in  the  selection of particular  cells  in  wing  imaginal  disks  to 
be  sensor  organ  precursors.  The  essential  molecule  to  add  is  the 
Notch  receptor,  a  membrane-bound  receptor  protein  responsible  for 
receiving  the  intercellular  signals  which  mediate  this  selection 
process.  It  binds  to  a  ligand  molecule  (“Delta”  for  this  system)  on 
neighboring  cells.  Recent  experiments  [Schroeter  et  al. ‘981 indicate 
that  it  acts on the  nucleus  (following  activation by a  ligand on 
another  cell) by having  an  intracellular  domain  cleaved  off  and 
transported  there.  Variants of the  Notch  receptor  occur in many 



developmental  subsystems  where  a  subpopulation of cells  must  be 
picked out,  in Drosophila and  homologously  across  many  species. 

In  [Marnellos ‘971 and  [Marnellos  and  Mjolsness  ‘98a,  ‘98b]  are 
reported  computer  experiments  incorporating  both  intracellular  and 
intercellular  components  in  a  gene  regulation  network  model of 
neurogenesis.  A  minimal  gene  circuit  model  with  lateral  inhibition 
(such as  depicted  in  Figure 5) was  not  quite  sufficient  to  produce  the 
observed  patterns of selection  robustly.  Incorporating  a  denser 
intracellular  connection  matrix  and/or  the  dynamic  effects of 
delamination  on  the  geometry of cell/cell  contact  area  produced 
better  results.  However,  the  “data”  to  which  the  fits  were  made  was 
highly  abstracted  from  real  gene  expression  data so it  is  premature 
to  draw  a  unique  biological  hypothesis  from  the  model.  Figure 6 
shows  the  resulting  model  behavior  in  the  case of dense 
interconnections. 
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Figure 5. A hypothesized  minimal  gene  regulation  circuit  for  lateral 
inhibition  mediated by Notch  and  Delta.  Redrawn  from  [Heitzler et a1 ’96, 
Figure 61. Two  neighboring  cells  express  Notch  (N)  and Delta (Dl)  at  their 
surfaces.  Notch  positively  regulates  transcription of genes of the 
Enhancer-of-split  complex  E(sp1)-C,  which  negatively  regulate 
transcription of genes of the a c h a  e t e  - s c  u t e  complex (AS-C), which 
positively  regulate  transcription of Delta.  Curved  boundaries  are the cell 
membranes  between  two  neighboring  cells.  Related  circuit  diagrams  have 
been  suggested  elsewhere  e.g.  [Lewis ‘961. 

Related  work  on  Notch-mediated  signaling  in  Drosophila 
developmental  models  includes  the  appearance of Notch  and  Delta  in 
the  ommatidia  model of [Morohashi and Kitano ‘981. 
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Figure 6. Cluster  resolution. A circuit “trained”  to  resolve  simple 
proneural  cluster  configurations  into  individual  neuroblasts  (or  sensory 
organ  precursor  cells)  is  tested  on  more  complex  and  irregular 
configurations. In this  case  each  cluster  was  successfully  resolved  into a 
single  neuroblast,  but  the  large  clusters  resolve  more slowly. From 
[Marnellos  and  Mjolsness  ‘98al. 

3 Extending  the  Model  to  Include  Promoter  Substructure 

A very important  scientific  problem  is  to  understand  the  influence of 
promoter  substructure  on e v e  stripe  formation.  The e v e  promoter 
has  many  transcription  factor  binding  sites,  some of which  are 
grouped  more or less  tightly  into  promoter  elements  such  as  the 
stripe 2 “minimal  stripe  element” (MSE 2) [Small  et  al. ‘921, or a 
similar  less  tightly  clustered  element  for  stripes 3 and 7 [Small et al. 
‘961. As an example of the  scientific  problems  that  are  raised, if is h b 
an enhancer  for MSE 2 but an inhibitor  for MSE 3, what is  its  net 
effect  on eve and can it change  sign  [Reinitz et al. ‘98]? And how are 
we  to  understand  the  action of “silencer”  elements  such  as  the  one 
apparently  responsible  for  long-range  repression of Zen by d o r s a l  
[Gray  et  al.  ‘95]? Such  questions  point  to  the  need  for at least  one 
additional  level of complication  in  the  phenomenological  models of 



gene  networks  whose  application  is  described  above,  to  describe  the 
substructure of promoters:  binding  sites,  their  interactions,  and 
promoter  elements.  Otherwise  the  relevant  experiments  cannot  even 
be  described, let alone  predicted,  with  network  models. 

In  [Small  et  al. ‘921 an informal  model  for  activation of MSE 2 is 
suggested: i t  is activated by bcd and hb “in  concert”,  and  repressed 
by g t  anteriorly  and K r  posteriorly. A simple  “analog  logic” 
expression  for  the  activation of MSE  2  in  terms of variables  taking 
values in [0,1]  might then be [GRN ‘981: 

UMSE2 = (bcd + y x hb)( 1 - gt ) (  1 - KT-) 

‘MSE2 = g ( ’ M S E 2 )  

where y is  a  weight  on  the  relative  contribution of h b  vs bcd.  A 
similar  simplified  formula  for  the  model of [Small et al.  ’96,  figure 81 
for  MSE 3 could be for  example: 

(We  omit  direct  activation of MSE3 by tailless  (tll) since tll represses 
kni [Pankratz  et  al. ‘891 which  represses MSE3.) The  rate of e v e  
transcription  would  be  approximated  by  a  further  analog  logic 
formula  including  a  weighted  “or” of the  MSE  activations vMsE2 and 
‘MSE3 

The  validation  or  invalidation  of  such  formulae  and  their 
interpretation  in  terms of more  detailed  models  will  require  a 
quantitative  treatement of the  relevant  expression  data  which  is  not 
yet  available.  It  may  also  lead  to  fitting  the  parameters  in 
quantitative  network  models of promoter-level  substructure  within  a 
gene  regulation  network. 

3.1 An  Example:  Hierarchical  Cooperative  Activation 

As an example of such  a  gene  network model  incorporating  promoter 
level  substructure, I introduce  here  a  “Hierarchical  Cooperative 
Activation”  (HCA)  model  for  the  degree of activation of a 
transcription  complex.  It  at  least  seems  more  descriptive of known 



mechanisms  than  a  previous  attempt  to  derive  phenomenological 
recurrent  neural  network  equations  as  an  approximation  to  gene 
regulation  dynamics  [Mjolsness  et  al. ‘911. An earlier  suggestion  for 
including  promoter-level  substructure  in  gene  regulation  networks  is 
described  in  [Sharp  et  al. ‘931. The  present  HCA  model  is  more 
detailed  but  has  not  been  fit to any  experimental  data  yet  and  is 
therefore  quite  speculative:  perhaps  a  next  stage of successful 
modeling  will  include  some of the  following  ingredients. 

The  basic  idea of the  model  is  to  use  an  equilibrium  statistical 
mechanics  model  (complete  with  partition  functions  valid  for  dilute 
solutions  [Hill ‘851) of “cooperative  activation”  in  activating  a  protein 
complex.  Such  a  model  can  be  constructed  from  the  following 
partition  function,  which  is  essentially  the  Monod-Wyman-Changeux 
model for  a  concerted  state  change  among  subunits  [Hill ’851: 

b b 

in which  the  probability of activation of some  complex  is  determined 
by relative  binding  constants  for  each  component b of the  complex in 
the  active and inactive  states,  but  there  are no  other  interactions. As 
before, vj represents  the  concentration of gene  product j of a  gene 
circuit. For  this  partition  function,  given  a  global  active  or  inactive 
state,  all  binding  sites  are  independent of one  another.  For  example 
the  components  could  be  the  occupants of all  the  binding  sites b 
within  a  particular  regulatory  region of a  eukaryotic  promoter.  This 
conditional  independence  leads  to  the  products  over  the  binding  sites 
in  the  expression  for 2. There  are  two  such  products  because  there  is 
an  additional  bit of global  state  which  can be “active”  or  “inactive”. 
Each  binding  site  is  presumably  specialized  to  a  particular 
transcription  factor  (but  see  below  for  heterodimers);  the  other ICs 
are  set  to  zero. 

In  the  special  case  where  all  the  binding  sites b specialized  to  a 
particular  transcription  factor j have  roughly  equal  binding  constants 
K ,  we can simplify 2: 

z = K n ( 1 +  K j v j y J  + n(l+ k j V j y J  
j 

For  this  model the probability of activation of the  complex  under 
consideration  is 



Ku” 
1 + Ku” 

P = g(u)  = 

1 + Kjvj 
m, I r n  

u = 1 + - k j ) v j  
m .  

i 

Here m can  be  chosen  as an average of mi over  the  relevant  gene 
products j .  (The  final  line  suggests  a  neural-network  like 
approximation  for u ,  although  in  that  regime g could  be  linearized 
also.)  But  we  will  not  restrict  all  consideration  to  this  specialized 
case. 

Given  such  a  model of “cooperative  activation”,  we’d  like  to  use  it 
hierarchically:  to  describe  the  activation of promoter  “modules”  or 
“elements”  in  terms of transcription  factor  concentrations,  and  then 
again  to  describe  the  activation of the  whole  transcription  complex  in 
terms of the  “concentrations” of active  promoter  elements,  which  are 
proportional  to  their  activities.  The  resulting  bare-bones  hierarchical 
model  would  replace  the  neural-net  activation  dynamics 

dv . 
dt 

7, 2 = [transcribing], - a,., 
[transcribing], = g(u,) 

ui = c q j v j  + hi 
i 

with  the  two-level  model 
7, - - [transcribing], - aiVi ’vi - 

dt 

[transcribing], = g(u, ) = ~ 

Ku, 
1 + Ku, 

1 + KaPa 

(if Kv << 1) 

a n d  



Ku," 
1 + Ku," p, = = 

mrg  Im 

u, = n [ 1 + Kjvj) 
1+ Kjvj  

However, we have  the  opportunity  to  include  a  few  more  biological 
mechanisms  at  this  point.  One  is  the  possibility  that,  as  in  the 
End016  model of [Yuh et al.],  the  hierarchy  could  go  much  deeper 
than  two  levels - especially if transcription  complex  formation  is  a 
sequential  process.  Another  significant  mechanism  is  competitive 
binding  within  a  promoter  element,  for  which  the  4-term  product of 
two  2-term  binding-site  partition  functions  is  replaced  with  one 
three-term  function by excluding  the  configuration  in  which  both 
competing  sites  are  occupied: 

z,,, = (1 + A,, K , ~ ,  + K ~ V ~  ) 
j k 

2,,, = (1 + CAbjKjv j  + C A b t k K k v k )  
j k 

(where A =O or 1 describes  which  transcription  factors bind to  which 
sites)  with  corresponding  modifications  to  the  update  equation.  Also 
homodimeric  and  heterodimeric  transcription  factor  binding  are  easy 
to  accommodate  with  appropriate  concentration  products  in  more 
general  one-site and two-site  partition  functions: 

2;) = (1 + CA,~~K,~V~V,)  
j k  

2;' = (1 + C A b j k k j k v j v k )  
j k  

z:;! = (I + C A ~ ~ ~ K ~ ~ V ~ V ~  + 

2:;; = (1 + CAbjkKjkvjvk + CAb,ipKipv,vp) 

Note  that  monomers  are a  special  case of dimers  in  which  the k index 
takes  a  special  value  for  which vk is  defined  as  a  constant. 
Transcription  factor  trimers  and  higher  order  subcomplexes  at 
adjacent  binding  sites  could  be  described by suitable  generalizations 
of these  expressions. 



Similarly,  constitutive  transcription  factor  binding  with  activation by 
phosphorylation  or  dephosphorylation  can be described  with  minor 
modifications of the  appropriate  one-site  or  two-site  partition 
functions.  For  example  one  could  use  Michaelis-Menton  kinetics  in 
steady-state  for  phosphorylation  and  dephosphorylation,  and the 
one-site  partition  functions ’ would  become 

where xjk is  proportional  to  the  concentration of a  kinase  for  the 
bound  j/k  dimer  (with  proportionality  constants  depending  on  the 
catalytic  reaction  rates)  and yjk is  proportional  to  a  corresponding 
phosphatase  concentration. Also Ahjk,,,,, I Abik, so that  the  extra  indices 1 
and rn just  specify  the  relevant  kinase(s) and phosphatase(s)  from  a 
kinase  network.  For  example  MAP  kinase  mediated  signaling  could 
be  modeled  as  activating  a  gene  regulation  network  by  this 
mechanism. 

Given  such  one-site  and  two-site  partition  functions,  the  overall 
partition  function  for  a  promoter  element  in  terms of its  binding  sites 
is: 

Silencers  are  just  particular  promoter  elements  with  sufficiently 
strong  negative  regulation of transcription  to  veto  any  other 
elements. 

The  resulting  model  (Figure 7) can  describe  promoter  elements, 
silencer  regions,  dimeric  and  competitive  binding,  and  constitutive 
transcription  factor  binding,  among  other  mechanisms.  The  price  is 
that  there  are  considerably  more  unknown  parameters in the  model 
- not  exponentially  many  as  in the general  N-binding  site  partition 
function,  but  enough  to  pose  a  challenge  to  model-fitting  procedures 
and  data  sets. 



Transcription  output 

Promoter element activation 

Binding site activation 

Binding site occupation - 
dimerization,  competitive binding 

Transcription  factor inputs 

Figure 7. Hierarchical  Cooperative  Activation  (HCA)  model  for  promoter 
substructure  within  a  gene  “node”  in  a  gene  regulation  network.  Different 
layers of sub-nodes  have  different  forms of dynamics.  This  network  could 
be  used  to  selectively  expand  some  or  all of the  nodes in Figure 1, for 
example  just  the “eve” gene in a network for the  gap  genes  and eve .  

4 Conclusion 

Gene  regulation  networks  have  been  applied  to  model  several 
episodes  in  the  development of Drosophi la ,  successfully  making 
contact  with  experimental  results.  A  variety of biological 
mechanisms  including  intercellular  signaling  can now be  included  in 
such  models.  We  proposed  a new version of gene  regulation  network 
models  for  use  in  describing  experiments  which  involve  promoter 
substructure,  such  as  transcription  factor  binding  sites  or  promoter 
regulatory  elements. 
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